Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization.

نویسندگان

  • Lester O Hedges
  • Stephen Whitelam
چکیده

We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Mechanical Properties of Travertine Building Stones Due to Salt Crystallization Using Multivariate Regression Analysis

     Salt crystallization is one of the most powerful weathering agents that may cause a rapid change in the mechanical properties of stones, and thus limit their durability. Consequently, determining the mechanical properties of stones due to salt crystallization is important for natural building stones used in marine environmental and mild climatic conditions, which expose excessive salt crys...

متن کامل

Crystallization Kinetics of Concurrent Liquid-Metastable and Metastable-Stable Transitions, and Ostwald's Step Rule.

Experimental measurements of colloidal crystallization in a wide range of volume fractions of charged particles were performed to investigate the liquid-metastable-stable transition process. To fit the obtained experimental data, we developed a theoretical model to formulate the kinetics of the concurrent liquid-metastable and metastable-stable transitions. This model is well-supported by our o...

متن کامل

Homogeneous crystal nucleation near a metastable fluid-fluid phase transition.

Several scenarios exist for the protein crystallization and aggregation in solutions near a metastable fluid-fluid phase separation below the solubility line. Based on computations, it was proposed that the fluid-fluid critical point enhances the crystallization rate by many orders of magnitude, while, based on experiments, it was proposed that the fluid-fluid spinodal controls the crystallizat...

متن کامل

Estimating the durability of building stones against Salt crystallization: considering the physical properties and strength characteristics

Salt crystallization is one of the most important weathering agents and may limit the durability of building stones. Salt crystallization induces stresses inside the pores of stones. Consequently, stone durability is closely related to its physical properties and strength. The purpose of this study was to propose a statistical model for estimating stone durability against salt crystallization c...

متن کامل

Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant

The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 16  شماره 

صفحات  -

تاریخ انتشار 2011